Leçon n° 106 : Groupe linéaire d'un espace vectoriel de dimension finie. Sous-groupes de $\mathrm{GL}(E)$. Applications.

Dans toute la suite on prendra \mathbb{K} un corps et E un \mathbb{K} -ev de dimension finie $n \geq 1$.

I/ Généralités sur le groupe linéaire. [PER] [ROM] [FGNAlg2]

Définition 1 : Définition du groupe linéaire.

Remarque 2 : Si \mathcal{B} est une base de E, il existe un isomorphisme non canonique entre GL(E) et $GL_n(\mathbb{K})$. L'intérêt est de fournir un outil pour le calcul matriciel.

Proposition 3 : Le déterminant est un morphisme de groupe, on définit SL(E).

Remarque 4 : Comme précédemment, SL(E) et $SL_n(\mathbb{K})$ sont isomorphes non canoniquement.

Proposition 5 : Définitions équivalentes d'une dilatation.

Remarque 6 : Définition des matrices de dilatation.

Proposition 7 : Définitions équivalentes d'une transvection.

Remarque 8 : Définition des matrices de transvection.

Développement 1.a)

Théorème 9 : Les transvections engendrent $\mathrm{SL}_n(\mathbb{K})$.

Corollaire 10: Les transvections et dilatations engendrent $GL_n(\mathbb{K})$.

Application 11 : (Algorithme du pivot de Gauss et opérations élémentaires) + complexité.

Proposition 12: (Comportement par conjugaison).

Proposition 13 : Deux dilatations sont conjuguées ssi elles ont même rapport.

Proposition 14 : Deux transvections quelconques sont conjuguées dans GL(E). Et si $n \ge 3$ elles le sont aussi dans SL(E).

II/ Étude des groupes GL(E) et SL(E).

A/ Centres et groupes dérivés. [PER]

Lemme 15 : Les éléments de $\mathrm{GL}(E)$ laissant stable toute droite sont les homothéties.

Proposition 16: Centre de GL(E) et SL(E).

Proposition 17: Groupe dérivé de $GL_n(\mathbb{K})$ et $SL_n(\mathbb{K})$.

B/ Cardinaux et isomorphismes exceptionnels. [PER] [CAL]

Définition 18: Groupes projectifs linéaires (et spécial linéaire).

Proposition 19: L'action du groupe projectif sur les droites est fidèle.

Proposition 20 : Cardinaux des différents objets.

Théorème 21: Isomorphismes exceptionnels.

Développement 2

Théorème 22 : Dénombrement des endomorphismes diagonalisables de \mathbb{F}_q^n .

C/ Matrices et permutations. [ROM] [OBJ]

Définition 23 : Matrices de permutation.

Proposition 24: Morphismes entre \mathfrak{S}_n et $\mathrm{GL}_n(\mathbb{R})$.

Corollaire 25 : Tout groupe fini d'ordre $n \ge 1$ est isomorphe à un sous-groupe de $\mathrm{GL}_n(\mathbb{F}_p)$ où p est premier.

Théorème 26 : Frobenius-Zolotarev.

D/ Groupe orthogonal. [BER] [ROM] [CAL]

Définition 27: Groupe orthogonal et groupe unitaire.

Proposition 28 : Ce sont des sous-groupes de GL(E).

Définition 29: Isométrie directe et groupe spécial orthogonal.

Proposition 30 : Si u est une isométrie (dans \mathbb{R}) alors il existe des espaces de dimension au plus 2 en somme directe stables par u.

Théorème 31 : (Réduction des isométries).

Théorème 32 : Décomposition polaire.

III/ Autres résultats sur GL(E).

A/ Actions de groupes matriciels. [ROM]

Proposition 33: Action $(P,A) \mapsto PA$ et orbites.

Proposition 34: Action $(P,A) \mapsto AP^{-1}$ et orbites.

Proposition 35 : Action de Steinitz (par équivalence) et orbites.

Proposition 36 : Action de GL(E) sur les espaces vectoriels de dimension k permettant de dénombrer cet ensemble si E et \mathbb{K} sont finis.

B/ Topologie du groupe linéaire [ROM] [FGNAlg2]

On se place ici dans le cas où $\mathbb{K}=\mathbb{R}$ ou $\mathbb{C}.$

Théorème 37 : GL(E) est ouvert dans $\mathcal{L}(E)$.

Théorème 38 : GL(E) est dense et $u \mapsto u^{-1}$ est continue.

Proposition 39 : SL(E) est fermé.

Proposition 40 : $\mathrm{GL}_n(\mathbb{C})$ est connexe.

Développement 1.b)

Proposition 41 : $SL_n(\mathbb{K})$ est connexe par arcs.

Proposition 42 : $GL_n(\mathbb{R})$ n'est pas connexe mais admet deux composantes connexes $GL_n^+(\mathbb{R})$ et $GL_n^-(\mathbb{R})$.

Références :

- [PER] Perrin p. 95
- [ROM] Rombaldi Algèbre 2nd éd. p. 139, p. 183 et p. 407
- [OBJ] Beck, Malick Peyré Objectif Agrégation p. 251
- [CAL] Caldéro Nouvelles Histoires hédonistes tome 1 p. 347 et Caldéro Histoires hédonistes tome 1 p. 250
- [FGNAlg2] Francinou Gianella Nicolas Algèbre 2 p. 177